From Motor Learning to Social Learning: A Study of Development on a Humanoid Robot
نویسندگان
چکیده
From Motor Learning to Social Learning: A Study of Development on a Humanoid Robot In this thesis, we describe how a humanoid robot designed to match the kinematics of a one-year old infant can learn to reach to visual targets, point toward visual targets, and share attention with a human. These three skills span the domains of motor learning and social learning. Instead of developing each of these skills independently, the robot naturally progresses from reaching to pointing and then from pointing to joint attention by taking advantage of social conventions and the assistance of a human. We first present a biologically plausible model for learning to reach to visual targets. This model is then extended to allow the robot to point toward distant objects that are outside of its reach without requiring additional learning. We demonstrate that the development of joint attention can be greatly facilitated by using pointing gestures to actively direct the attention of the robot’s caregiver, resulting in learning times that are two orders of magnitude less than comparable published models and eliminating the need for hand-labeling training data. A dedicated system to evaluate this idea is presented and its performance is demonstrated. From Motor Learning to Social Learning: A Study of Development on a Humanoid Robot A Dissertation Presented to the Faculty of the Graduate School of Yale University in Candidacy for the Degree of Doctor of Philosophy
منابع مشابه
Exploring Social Robots as a tool for Special Education to teach English to Iranian Kids with Autism
This case study investigates the effects of Robot Assisted Language Learning (RALL) on English vocabulary learning and retention of Iranian children with high-functioning autism. Two groups of three male students (6-10 years old) with high-functioning autism participated in the current study. The humanoid robot NAO was used as a teacher assistant to teach English to the RALL group. Both RALL an...
متن کاملFlexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot
This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...
متن کاملMechatronic Hand Design with Integrated Mechanism in Palm for Efficiency Improve of the Finger.
One of the most important case in humanoid robot designing is hand, which it consider as an country development. High percentage of robot work quality depend on hand capability. A robot function increase with hand movement. One of important movement in artificial hand capability relate to fingers lateral movement. This case has more effect intake of special objects such as round shape or moving...
متن کاملView-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid
Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a percep...
متن کاملIs imitation learning the route to humanoid robots?
This review investigates two recent developments in artificial intelligence and neural computation: learning from imitation and the development of humanoid robots. It is postulated that the study of imitation learning offers a promising route to gain new insights into mechanisms of perceptual motor control that could ultimately lead to the creation of autonomous humanoid robots. Imitation learn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006